Approximate Inference Using DC Programming For Collective Graphical Models
نویسندگان
چکیده
Collective graphical models (CGMs) provide a framework for reasoning about a population of independent and identically distributed individuals when only noisy and aggregate observations are given. Previous approaches for inference in CGMs work on a junction-tree representation, thereby highly limiting their scalability. To remedy this, we show how the Bethe entropy approximation naturally arises for the inference problem in CGMs. We reformulate the resulting optimization problem as a difference-of-convex functions program that can capture different types of CGM noise models. Using the concave-convex procedure, we then develop a scalable messagepassing algorithm. Empirically, we show our approach is highly scalable and accurate for large graphs, more than an orderof-magnitude faster than a generic optimization solver, and is guaranteed to converge unlike the previous message-passing approach NLBP that fails in several loopy graphs.
منابع مشابه
Approximate Inference in Collective Graphical Models
We study the problem of approximate inference in collective graphical models (CGMs), which were recently introduced to model the problem of learning and inference with noisy aggregate observations. We first analyze the complexity of inference in CGMs: unlike inference in conventional graphical models, exact inference in CGMs is NP-hard even for tree-structured models. We then develop a tractabl...
متن کاملMessage Passing for Collective Graphical Models
Collective graphical models (CGMs) are a formalism for inference and learning with aggregate data that are motivated by a model for bird migration. We highlight a close connection between approximate MAP inference in CGMs and marginal inference in standard graphical models. The connection leads us to derive a novel Belief Propagation (BP)-style algorithm for collective graphical models. The alg...
متن کاملApproximate Inference in Graphical Models
OF THE DISSERTATION Approximate Inference in Graphical Models By Sholeh Forouzan Doctor of Philosophy in Computer Science University of California, Irvine, 2015 Professor Alexander Ihler, Chair Graphical models have become a central paradigm for knowledge representation and reasoning over models with large numbers of variables. Any useful application of these models involves inference, or reaso...
متن کاملBottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical Models
OF THE DISSERTATION Bottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical Models By Andrew Edward Gelfand Doctor of Philosophy in Computer Science University of California, Irvine, 2014 Professors Rina Dechter, Alexander Ihler, Co-Chairs Probabilistic graphical models offer a convenient and compact way to describe complex and uncertain relationships in data. A graphic...
متن کاملBudgeted Online Collective Inference
Updating inference in response to new evidence is a fundamental challenge in artificial intelligence. Many real problems require large probabilistic graphical models, containing millions of interdependent variables. For such large models, jointly updating the most likely (i.e., MAP) configuration of the variables each time new evidence is encountered can be infeasible, even if inference is trac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016